A Feature Selection Method for Multivariate Performance Measures
نویسندگان
چکیده
منابع مشابه
A New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملRandom subspace method for multivariate feature selection
In a growing number of domains the data collected has a large number of features. This poses a challenge to classical pattern recognition techniques, since the number of samples often is still limited with respect to the feature size. Classical pattern recognition methods suffer from the small sample size, and robust classification techniques are needed. In order to reduce the dimensionality of...
متن کاملA Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملPrincipal Feature Analysis: A Multivariate Feature Selection Method for fMRI Data
Brain decoding with functional magnetic resonance imaging (fMRI) requires analysis of complex, multivariate data. Multivoxel pattern analysis (MVPA) has been widely used in recent years. MVPA treats the activation of multiple voxels from fMRI data as a pattern and decodes brain states using pattern classification methods. Feature selection is a critical procedure of MVPA because it decides whic...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2013
ISSN: 0162-8828,2160-9292
DOI: 10.1109/tpami.2012.266